Uncertainty quantification in vehicle content optimization for General Motors
Year of publication: |
2020
|
---|---|
Authors: | Song, Eunhye ; Wu-Smith, Peiling ; Nelson, Barry L. |
Published in: |
INFORMS journal on applied analytics. - Catonsville, Md. : INFORMS, ISSN 2644-0865, ZDB-ID 2967741-5. - Vol. 50.2020, 4, p. 225-238
|
Subject: | vehicle market simulation | design of experiments | discrete choice model | uncertainty quantification | sensitivity analysis | Simulation | Diskrete Entscheidung | Discrete choice | Theorie | Theory | Sensitivitätsanalyse | Sensitivity analysis | Kfz-Industrie | Automotive industry | Kraftfahrzeug | Motor vehicle | Risiko | Risk |
-
Development of an automobile industry risk index
Sharma, Satyendra Kumar, (2019)
-
Rabitti, Giovanni, (2020)
-
An approach to quantify parameter uncertainty in early assessment of novel health technologies
Iskandar, Rowan, (2022)
- More ...
-
Gaussian Markov random fields for discrete optimization via simulation : framework and algorithms
Salemi, Peter L., (2019)
-
Rapid discrete optimization via simulation with Gaussian Markov random fields
Semelhago, Mark, (2021)
-
Input-output uncertainty comparisons for discrete optimization via simulation
Song, Eunhye, (2019)
- More ...