Understanding machine learning-based forecasting methods : a decomposition framework and research opportunities
Year of publication: |
2022
|
---|---|
Authors: | Bojer, Casper Solheim |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 38.2022, 4, p. 1555-1561
|
Subject: | Machine learning | M5 competition | Forecasting | Ablation testing | Decomposition | Framework | Kaggle | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Dekompositionsverfahren | Decomposition method | Theorie | Theory |
-
Nasios, Ioannis, (2022)
-
Learning forecast-efficient yield curve factor decompositions with neural networks
Kauffmann, Piero C., (2022)
-
Decomposition methods for tourism demand forecasting : a comparative study
Zhang, Chengyuan, (2022)
- More ...
-
Kaggle forecasting competitions : an overlooked learning opportunity
Bojer, Casper Solheim, (2021)
- More ...