Uniform consistency of a class of regression function estimators for Banach-space valued random variable
This paper deals with an estimator mn of the regression function m(x) = E(Y X = x) with X in the real line and Y in a sufficiently regular Banach space. By using infinite dimensional probability inequalities for sums, we show that mn is uniformly consistent.
Year of publication: |
1990
|
---|---|
Authors: | Lecoutre, Jean-Pierre |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 10.1990, 2, p. 145-149
|
Publisher: |
Elsevier |
Keywords: | Regression function statistically equivalent blocks estimator Banach-space valued random variable almost complete convergence |
Saved in:
Saved in favorites
Similar items by person
-
Théorie de l'estimation fonctionnelle
Bosq, Denis, (1987)
-
The L2-optimal cell width for the histogram
Lecoutre, Jean-Pierre, (1985)
-
Lecoutre, Jean-Pierre, (1985)
- More ...