Unsupervised machine learning based anomaly detection in high frequency data : Evidence from Cryptocurrency Market
| Year of publication: |
2025
|
|---|---|
| Authors: | Latif, Muhammad Nouman ; Kaplan, Muhittin ; Khan, Asad ul Islam |
| Published in: |
Pakistan journal of commerce and social sciences. - Lahore : [Verlag nicht ermittelbar], ISSN 2309-8619, ZDB-ID 2526678-0. - Vol. 19.2025, 3, p. 407-440
|
| Subject: | anomaly detection | Bitcoin | Dashcoin | Ethereum | Litecoin. | Monte Carlo simulations | Stellar | Tron | Unsupervised machine learning models | Künstliche Intelligenz | Artificial intelligence | Virtuelle Währung | Virtual currency | Monte-Carlo-Simulation | Monte Carlo simulation |
| Type of publication: | Article |
|---|---|
| Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
| Language: | English |
| Other identifiers: | 10.64534/Commer.2025.511 [DOI] hdl:10419/330356 [Handle] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Latif, Muhammad Nouman, (2025)
-
Optimising portfolio risk by involving crypto assets in a volatile macroeconomic environment
Bányai, Attila, (2024)
-
Between financial and algorithmic dynamics of cryptocurrencies : an exploratory study
Schinckus, Christophe, (2023)
- More ...
-
Vergil, Hasan, (2025)
-
Kaplan, Muhittin, (2024)
-
Rahman, Mohammed Muntaka Abdul, (2025)
- More ...