Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model
Year of publication: |
2022
|
---|---|
Authors: | Lin, Zhu ; Cunningham, Scott W. |
Published in: |
Technological forecasting & social change : an international journal. - Amsterdam : Elsevier, ISSN 0040-1625, ZDB-ID 280700-2. - Vol. 174.2022, p. 1-26
|
Subject: | Historical trends | Machine learning | Technological forecasting | Topic models | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Technischer Fortschritt | Technological change | Sozialer Wandel | Social change | Technologievorausschau | Technology foresight |
-
Technological forecasting based on estimation of word embedding matrix using LSTM networks
Gozuacik, Necip, (2023)
-
Artificial intelligence in innovation : how to spot emerging trends and technologies
Mühlroth, Christian, (2022)
-
Kajikawa, Yuya, (2022)
- More ...
-
Escanciano, Juan Carlos, (2013)
-
Set inferences and sensitivity analysis in semiparametric conditionally identified models
Escanciano, Juan Carlos, (2013)
-
Paired cooperative reoptimization strategy for the vehicle routing problem with stochastic demands
Zhu, Lin, (2014)
- More ...