Using a Conic Bundle method to accelerate both phases of a quadratic convex reformulation
Year of publication: |
2017
|
---|---|
Authors: | Billionnet, Alain ; Elloumi, Sourour ; Lambert, Amélie ; Wiegele, Angelika |
Published in: |
INFORMS journal on computing : JOC. - Catonsville, MD : INFORMS, ISSN 1091-9856, ZDB-ID 1316077-1. - Vol. 29.2017, 2, p. 318-331
|
Subject: | semidefinite programming | Lagrangian duality | subgradient algorithm | bundle method | convex reformulation | quadratic 0–1 programming | k-cluster | densest subgraph | Mathematische Optimierung | Mathematical programming | Theorie | Theory | Leistungsbündel | Bundling strategy |
-
Adaptive bundle methods for nonlinear robust optimization
Kuchlbauer, Martina, (2022)
-
Essentials of numerical nonsmooth optimization
Gaudioso, Manlio, (2020)
-
Convex optimization for bundle size pricing problem
Li, Xiaobo, (2022)
- More ...
-
An efficient compact quadratic convex reformulation for general integer quadratic programs
Billionnet, Alain, (2013)
-
A tight compact quadratically constrained convex relaxation of the Optimal Power Flow problem
Lambert, Amélie, (2024)
-
A tighter formulation of the p-median problem
Elloumi, Sourour, (2010)
- More ...