Using Dependency Bigrams and Discourse Connectives for Predicting the Helpfulness of Online Reviews
Year of publication: |
2014
|
---|---|
Authors: | Mertz, Matthias ; Korfiatis, Nikolaos ; Zicari, Roberto |
Publisher: |
[S.l.] : SSRN |
Subject: | Virales Marketing | Viral marketing | Konsumentenverhalten | Consumer behaviour | Prognoseverfahren | Forecasting model | Online-Marketing | Internet marketing | Online-Handel | Online retailing |
Extent: | 1 Online-Ressource (11 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments April 24, 2014 erstellt |
Other identifiers: | 10.2139/ssrn.2428885 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
A deep learning model for online doctor rating prediction
Kulshrestha, Anurag, (2023)
-
A sales forecasting model for consumer products based on the influence of online word-of-mouth
Chern, Ching-Chin, (2015)
-
The effect of user-controllable filters on the prediction of online hotel reviews
Hu, Ya-Han, (2017)
- More ...
-
Mining Negativity from Online Reviews : A Comparison between Search and Experience Goods
Rill, Sven, (2013)
-
Gender Effects and Cooperation Styles in the Facebook Community : A Quasi-Experimental Assessment
Korfiatis, Nikolaos, (2015)
-
Exploring the behavioral drivers of review valence
Stamolampros, Panagiotis, (2018)
- More ...