Using machine learning to model technological heterogeneity in carbon emission efficiency evaluation : the case of China's cities
Year of publication: |
2022
|
---|---|
Authors: | Wang, Ailun ; Hu, Shuo ; Li, Jianglong |
Published in: |
Energy economics. - Amsterdam : Elsevier, ISSN 0140-9883, ZDB-ID 795279-X. - Vol. 114.2022, p. 1-15
|
Subject: | Carbon emission efficiency | Directional distance function | Heterogeneity | Index decomposition analysis | Machine learning | Reduction potential | Treibhausgas-Emissionen | Greenhouse gas emissions | Künstliche Intelligenz | Artificial intelligence | China | Luftverschmutzung | Air pollution | Technische Effizienz | Technical efficiency | Technischer Fortschritt | Technological change | Data-Envelopment-Analyse | Data envelopment analysis | Umweltbelastung | Pollution | Effizienz | Efficiency |
-
Xing, Peixue, (2024)
-
Low-carbon city pilot and carbon emission efficiency : quasi-experimental evidence from China
Yu, Yantuan, (2021)
-
Decomposition of the environmental inefficiency of the meta-frontier with undesirable output
Chiu, Ching-ren, (2012)
- More ...
-
Wang, Ailun, (2021)
-
Wang, Ailun, (2021)
-
Wang, Ailun, (2023)
- More ...