Using machine learning to predict realized variance
Year of publication: |
2020
|
---|---|
Authors: | Carr, Peter ; Wu, Liuren ; Zhang, Zhibai |
Published in: |
Journal of investment management : JOIM. - Lafayette, Calif., ISSN 1545-9144, ZDB-ID 2495180-8. - Vol. 18.2020, 2, p. 57-72
|
Subject: | Volatility Prediction | Machine Learning | Neutral Networks | Ridge Regression | Option Pricing | Künstliche Intelligenz | Artificial intelligence | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Optionspreistheorie | Option pricing theory | Regressionsanalyse | Regression analysis | Neuronale Netze | Neural networks |
-
Machine learning for predicting stock return volatility
Filipović, Damir, (2021)
-
Cryptocurrency price and volatility predictions with machine learning
Poudel, Samir, (2023)
-
Artificial Neural Networks Performance in WIG20 Index Options Pricing
Wysockia, Maciej, (2020)
- More ...
-
Time-changed Lévy processes and option pricing
Carr, Peter, (2004)
-
What type of process underlies options? : A simple robust test
Carr, Peter, (2003)
-
Probabilistic interpretation of Black implied volatility
Carr, Peter, (2023)
- More ...