Using methods from machine learning to evaluate behavioral models of choice under risk and ambiguity
Year of publication: |
January 2017
|
---|---|
Authors: | Peysakhovich, Alexander ; Naecker, Jeffrey |
Published in: |
Journal of economic behavior & organization : JEBO. - Amsterdam [u.a.] : Elsevier, ISSN 0167-2681, ZDB-ID 864321-0. - Vol. 133.2017, p. 373-384
|
Subject: | Behavioral economics | Machine learning | Risk | Ambiguity | Decision-making | Künstliche Intelligenz | Artificial intelligence | Verhaltensökonomik | Entscheidung unter Risiko | Decision under risk | Entscheidung unter Unsicherheit | Decision under uncertainty | Experiment | Entscheidung | Decision | Entscheidungstheorie | Decision theory |
-
Dynamic decision making under ambiguity : a portfolio choice experiment
Georgalos, Konstantinos, (2016)
-
Dynamic decision making under ambiguity : an experimental investigation
Georgalos, Konstantinos, (2021)
-
The effects of awe-eliciting experiences on consumers' aversion to choice ambiguity
Ahmmad, Kamal, (2024)
- More ...
-
Using Methods from Machine Learning to Evaluate Behavioral Models of Choice Under Risk and Ambiguity
Peysakhovich, Alexander, (2017)
-
Non-Choice Evaluations Predict Behavioral Responses to Changes in Economic Conditions
Bernheim, B. Douglas, (2013)
-
When Fair Isn't Fair : Understanding Choice Reversals Involving Social Preferences
Andreoni, James, (2018)
- More ...