Using random subspace method for prediction and variable importance assessment in linear regression
Year of publication: |
2014
|
---|---|
Authors: | Mielniczuk, Jan ; Teisseyre, Paweł |
Published in: |
Computational Statistics & Data Analysis. - Elsevier, ISSN 0167-9473. - Vol. 71.2014, C, p. 725-742
|
Publisher: |
Elsevier |
Subject: | Random subspace method | High-dimensional model selection | Prediction | Variable importance | Positive selection rate | False discovery rate |
-
Statistical Inference for Variable Importance
Laan, Mark van der, (2006)
-
The anatomy of out-of-sample forecasting accuracy
Borup, Daniel, (2022)
-
Pre- and within-season attendance forecasting in Major League Baseball: A random forest approach
Mueller, Steffen Q., (2018)
- More ...
-
Distant long-range dependent sums and regression estimation
Csörgo, Sándor, (1995)
-
Local linear regression estimation for time series with long-range dependence
Masry, Elias, (1999)
-
Mielniczuk, Jan, (2014)
- More ...