Using survey information for improving the density nowcasting of U.S. GDP
Year of publication: |
2023
|
---|---|
Authors: | Çakmaklı, Cem ; Demircan, Hamza |
Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Abingdon : Taylor & Francis, ISSN 1537-2707, ZDB-ID 2043744-4. - Vol. 41.2023, 3, p. 667-682
|
Subject: | Bayesian inference | Disagreement | Dynamic factor model | Predictive density evaluation | Stochastic volatility | Survey of professional forecasters | Prognoseverfahren | Forecasting model | USA | United States | Bayes-Statistik | Volatilität | Volatility | Schätzung | Estimation | Wirtschaftsprognose | Economic forecast | Stochastischer Prozess | Stochastic process | Theorie | Theory | Faktorenanalyse | Factor analysis | Bruttoinlandsprodukt | Gross domestic product |
-
Çakmaklı, Cem, (2020)
-
Nowcasting GDP with a pool of factor models and a fast estimation algorithm
Eraslan, Sercan, (2023)
-
Short-Term GDP Forecasting with a Mixed Frequency Dynamic Factor Model with Stochastic Volatility
Marcellino, Massimiliano, (2014)
- More ...
-
Çakmaklı, Cem, (2019)
-
Çakmaklı, Cem, (2020)
-
Çakmaklı, Cem, (2018)
- More ...