Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems
We describe a bootstrap method for estimating mean squared error and smoothing parameter in nonparametric problems. The method involves using a resample of smaller size than the original sample. There are many applications, which are illustrated using the special cases of nonparametric density estimation, nonparametric regression, and tail parameter estimation.
Year of publication: |
1990
|
---|---|
Authors: | Hall, Peter |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 32.1990, 2, p. 177-203
|
Publisher: |
Elsevier |
Keywords: | bias bootstrap density estimation mean squared error nonparametric regression smoothing parameter |
Saved in:
Saved in favorites
Similar items by person
-
Hall, Peter, (1994)
-
Technopoles of the world : the making of 21st century industrial complexes
Castells, Manuel, (1994)
-
Hall, Peter, (1992)
- More ...