Validating linear restrictions in linear regression models with general error structure
Year of publication: |
2006
|
---|---|
Authors: | Holzmann, Hajo ; Min, Aleksey ; Czado, Claudia |
Publisher: |
München : Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen |
Subject: | asymptotic normality | linear regression | model selection | model validation |
Series: | Discussion Paper ; 478 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | 10.5282/ubm/epub.1846 [DOI] 51717104X [GVK] hdl:10419/31063 [Handle] |
Source: |
-
A new automated model validation tool for financial institutions
Fan, Lingling, (2023)
-
A comparison of machine learning model validation schemes for non-stationary time series data
Schnaubelt, Matthias, (2019)
-
Foundational Issues in Statistical Modeling: Statistical Model Specification and Validation
Spanos, Aris, (2011)
- More ...
-
Model selection strategies for identifying most relevant covariates in homoscedastic linear models
Min, Aleksey, (2010)
-
Validating linear restrictions in linear regression models with general error structure
Holzmann, Hajo, (2006)
-
Almost sure limit theorems for U-statistics
Holzmann, Hajo, (2004)
- More ...