Volatility estimation using a rational GARCH model
Year of publication: |
2018
|
---|---|
Authors: | Takaishi, Tetsuya |
Published in: |
Quantitative finance and economics. - [Springfield, Mo.] : AIMS Press, ISSN 2573-0134, ZDB-ID 2937262-8. - Vol. 2.2018, 1, p. 127-136
|
Subject: | asymmetric volatility | rational GARCH model | bayesian inference | Markov Chain Monte Carlo | Metropolis-Hastings algorithm | realized volatility | Padé approximants | student-t distribution | QLIKE loss function | Volatilität | Volatility | ARCH-Modell | ARCH model | Bayes-Statistik | Bayesian inference | Markov-Kette | Markov chain | Schätztheorie | Estimation theory | Schätzung | Estimation | Monte-Carlo-Simulation | Monte Carlo simulation | Statistische Verteilung | Statistical distribution | Kapitaleinkommen | Capital income |
-
Lengua Lafosse, Patricia, (2018)
-
A simple efficient moment-based estimator for the stochastic volatility model
Ahsan, Nazmul, (2019)
-
Chen, Liyuan, (2018)
- More ...
-
Time evolution of market efficiency and multifractality of the Japanese stock market
Takaishi, Tetsuya, (2022)
-
Bayesian estimation of realized stochastic volatility model by Hybrid Monte Carlo algorithm
Takaishi, Tetsuya, (2014)
-
Empirical Study of the GARCH model with Rational Errors
Chen, Ting Ting, (2013)
- More ...