What Can Analysts Learn from Artificial Intelligence about Fundamental Analysis?
Year of publication: |
[2021]
|
---|---|
Authors: | Binz, Oliver ; Schipper, Katherine ; Standridge, Kevin |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Finanzanalyse | Financial analysis | Anlageverhalten | Behavioural finance |
Extent: | 1 Online-Ressource (71 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 1, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3745078 [DOI] |
Classification: | C53 - Forecasting and Other Model Applications ; G10 - General Financial Markets. General ; M41 - Accounting |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Analysts, Fundamentals, and Portfolio Selection : A Machine Learning Approach
Bonini, Stefano, (2021)
-
Measuring China's stock market sentiment
Li, Jia, (2019)
-
Machine Learning for Stock Selection
Rasekhschaffe, Keywan, (2019)
- More ...
-
Did the Securities Exchange Act of 1934 Increase Accounting Comparability?
Binz, Oliver, (2022)
-
The Information Content of Corporate Earnings : Evidence from the Securities Exchange Act of 1934
Binz, Oliver, (2022)
-
Did the fasb codification reduce the complexity of applying U.S. GAAP?
Binz, Oliver, (2023)
- More ...