What is the value of the cross-sectional approach to deep reinforcement learning?
Year of publication: |
2022
|
---|---|
Authors: | Aboussalah, Amine Mohamed ; Xu, Ziyun ; Lee, Chi-Guhn |
Published in: |
Quantitative finance. - London : Taylor & Francis, ISSN 1469-7696, ZDB-ID 2027557-2. - Vol. 22.2022, 6, p. 1091-1111
|
Subject: | Portfolio optimization | Deep learning | Reinforcement learning | Computational finance | Convolutional neural networks | Cross-sectional analysis | Optimal policies | Portfolio allocation | Portfolio-Management | Portfolio selection | Neuronale Netze | Neural networks | Theorie | Theory | Lernprozess | Learning process | Lernen | Learning | Mathematische Optimierung | Mathematical programming | Querschnittsanalyse | Cross-section analysis |
-
Deep learning, predictability, and optimal portfolio returns
Babiak, Mykola, (2020)
-
Li, Yuze, (2021)
-
Reinforcement learning about asset variability and correlation in repeated portfolio decisions
Olschewski, Sebastian, (2021)
- More ...
-
What is the Value of the Cross-Sectional Approach to Deep Reinforcement Learning?
Aboussalah, Amine Mohamed, (2021)
-
Reinforcement Learning with Symmetry Augmentation for Portfolio Management
Aboussalah, Amine Mohamed, (2021)
-
Aboussalah, Amine Mohamed, (2021)
- More ...