WHAT WORKS BEST AND WHEN: ACCOUNTING FOR MULTIPLE SOURCES OF PURESELECTION BIAS IN PROGRAM EVALUATIONS
Most evaluations are still quasi‐experimental and most recent quasi‐experimental methodological research has focused on various types of propensity score matching to minimize conventional selection bias on observables. Although these methods create better‐matched treatment and comparison groups on observables, the issue of selection on unobservables still looms large. Thus, in the absence of being able to run randomized controlled trials (RCTs) or natural experiments, it is important to understand how well different regression‐based estimators perform in terms of minimizing pure selection bias, that is, selection on unobservables. We examine the relative magnitudes of three sources of pure selection bias: heterogeneous response bias, time‐invariant individual heterogeneity (fixed effects [FEs]), and intertemporal dependence (autoregressive process of order one [AR(1)]). Because the relative magnitude of each source of pure selection bias may vary in different policy contexts, it is important to understand how well different regression‐based estimators handle each source of selection bias. Expanding simulations that have their origins in the work of Heckman, LaLonde, and Smith (<link href="#pam21764-bib-0025"/>), we find that difference‐in‐differences (DID) using equidistant pre‐ and postperiods and FEs estimators are less biased and have smaller standard errors in estimating the Treatment on the Treated (TT) than other regression‐based estimators. Our data analysis using the Job Training Partnership Act (JTPA) program replicates our simulation findings in estimating the TT.
Year of publication: |
2014
|
---|---|
Authors: | Jung, Haeil ; Pirog, Maureen A. |
Published in: |
Journal of Policy Analysis and Management. - John Wiley & Sons, Ltd., ISSN 0276-8739. - Vol. 33.2014, 3, p. 752-777
|
Publisher: |
John Wiley & Sons, Ltd. |
Saved in:
Saved in favorites
Similar items by person
-
Do public pensions crowd out private transfers to the elderly? : evidence from South Korea
Jung, Haeil, (2016)
-
The long-run labour market effects of expanding access to higher education in South Korea
Jung, Haeil, (2016)
-
Jung, Haeil, (2014)
- More ...