When algorithms import private bias into public enforcement : the promise and limitations of statistical debiasing solutions
Year of publication: |
2019
|
---|---|
Authors: | Altenburger, Kristen M. ; Houser, Daniel |
Published in: |
Journal of institutional and theoretical economics : JITE. - Tübingen : Mohr Siebeck, ISSN 0932-4569, ZDB-ID 232799-5. - Vol. 175.2019, 1, p. 98-122
|
Subject: | racial bias | antidiscrimination | predictive targeting | algorithmic fairness | Theorie | Theory | Ethnische Diskriminierung | Ethnic discrimination | Algorithmus | Algorithm | Systematischer Fehler | Bias | Prognoseverfahren | Forecasting model | Gerechtigkeit | Justice | Diskriminierung | Discrimination |
-
Algorithmic bias and racial inequality : a critical review
Kasy, Maximilian, (2024)
-
Time to assess bias in machine learning models for credit decisions
Brotcke, Liming, (2022)
-
Algorithmic bias and racial inequality : a critical review
Kasy, Maximilian, (2024)
- More ...
-
The accuracy-discrimination trade-off
Engel, Christoph, (2019)
-
Characterizing Interference Heterogeneity and Improving Estimation for Experiments in Networks
Yuan, Yuan, (2022)
-
Selling favors in the lab: experiments on campaign finance reform
Houser, Daniel, (2006)
- More ...