When machines read the news : using automated text analytics to quantify high frequency news-implied market reactions
Year of publication: |
2011
|
---|---|
Authors: | Groß-Klußmann, Axel ; Hautsch, Nikolaus |
Published in: |
Journal of empirical finance. - Amsterdam [u.a.] : Elsevier, ISSN 0927-5398, ZDB-ID 1158263-7. - Vol. 18.2011, 2, p. 321-340
|
Subject: | Firm-specific news | News sentiment | High-frequency data | Volatility | Liquidity | Abnormal returns | Ankündigungseffekt | Announcement effect | Volatilität | Börsenkurs | Share price | Kapitaleinkommen | Capital income | Mediale Berichterstattung | Media coverage | Schätzung | Estimation | Wirtschaftsinformation | Economic information | Elektronisches Handelssystem | Electronic trading | Kapitalmarktrendite | Capital market returns |
-
Time-variation in the impact of news sentiment
Smales, Lee A., (2015)
-
Peng, Jing, (2022)
-
Forecasting high-frequency volatility shocks : an analytical real-time monitoring system
Kömm, Holger, (2016)
- More ...
-
Quantifying high-frequency market reactions to real-time news sentiment announcements
Groß-Klußmann, Axel, (2009)
-
Quantifying high-frequency market reactions to real-time news sentiment announcements
Groß-Klußmann, Axel, (2009)
-
Predicting bid-ask spreads using long memory autoregressive conditional poisson models
Groß-Klußmann, Axel, (2011)
- More ...