Worst case analysis for a general class of on-line lot-sizing heuristics.
In this paper we analyze the worst case performance of heuristics for the classical economic lot-sizing problem with time-invariant cost parameters. We consider a general class of on-line heuristics that is often applied in a rolling horizon environment. We develop a procedure to systematically construct worst case instances for a fixed time horizon and use it to derive worst case problem instances for an infinite time horizon. Our analysis shows that any on-line heuristic has a worst case ratio of at least 2. Furthermore, we show how the results can be used to construct heuristics with optimal worst case performance for small model horizons.