Showing 1 - 10 of 341
We propose a classical approach to estimate factor-augmented vector autoregressive (FAVAR) models with time variation in the factor loadings, in the factor dynamics, and in the variance-covariance matrix of innovations. When the time-varying FAVAR is estimated using a large quarterly dataset of...
Persistent link: https://www.econbiz.de/10008921778
This paper estimates and tests a new Keynesian small open economy model in the tradition of Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2003) using Bayesian estimation techniques on Swedish data. To account for the switch to an inflation targeting regime in 1993 we allow for...
Persistent link: https://www.econbiz.de/10005661438
We analyse the relative performance of the IMF, OECD and EC in forecasting the government deficit, as a ratio to DGP, for the G7 countries. Interesting differences across countries emerge, sometimes supporting the hypothesis of an asymmetric loss function (i.e., of a preference for...
Persistent link: https://www.econbiz.de/10005661466
Starting from the dynamic factor model for non-stationary data we derive the factor-augmented error correction model (FECM) and, by generalizing the Granger representation theorem, its moving-average representation. The latter is used for the identification of structural shocks and their...
Persistent link: https://www.econbiz.de/10011083358
This paper brings together several important strands of the econometrics literature: error-correction, cointegration and dynamic factor models. It introduces the Factor-augmented Error Correction Model (FECM), where the factors estimated from a large set of variables in levels are jointly...
Persistent link: https://www.econbiz.de/10005136642
As a generalization of the factor-augmented VAR (FAVAR) and of the Error Correction Model (ECM), Banerjee and Marcellino (2009) introduced the Factor-augmented Error Correction Model (FECM). The FECM combines error-correction, cointegration and dynamic factor models, and has several conceptual...
Persistent link: https://www.econbiz.de/10008468646
The estimation of large Vector Autoregressions with stochastic volatility using standard methods is computationally very demanding. In this paper we propose to model conditional volatilities as driven by a single common unobserved factor. This is justified by the observation that the pattern of...
Persistent link: https://www.econbiz.de/10011083279
This paper describes an algorithm to compute the distribution of conditional forecasts, i.e. projections of a set of variables of interest on future paths of some other variables, in dynamic systems. The algorithm is based on Kalman filtering methods and is computationally viable for large...
Persistent link: https://www.econbiz.de/10011084028
This paper considers Bayesian regression with normal and double exponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range...
Persistent link: https://www.econbiz.de/10005661527
This paper assesses the performance of Bayesian Vector Autoregression (BVAR) for models of different size. We consider standard specifications in the macroeconomic literature based on, respectively, three and eight variables and compare results with those obtained by larger models containing...
Persistent link: https://www.econbiz.de/10005666834