Showing 1 - 5 of 5
We use LASSO methods to shrink, select and estimate the high-dimensional network linking the publicly-traded subset of the world's top 150 banks, 2003-2014. We characterize static network connectedness using full-sample estimation and dynamic network connectedness using rolling-window...
Persistent link: https://www.econbiz.de/10012963187
We use variance decompositions from high-dimensional vector autoregressions to characterize connectedness in 19 key commodity return volatilities, 2011-2016. We study both static (full-sample) and dynamic (rolling-sample) connectedness. We summarize and visualize the results using tools from...
Persistent link: https://www.econbiz.de/10012949432
This paper considers the problem of forecasting a collection of short time series using cross sectional information in panel data. We construct point predictors using Tweedie's formula for the posterior mean of heterogeneous coefficients under a correlated random effects distribution. This...
Persistent link: https://www.econbiz.de/10012910300
We use dynamic panel data models to generate density forecasts for daily Covid-19 infections for a panel of countries/regions. At the core of our model is a specification that assumes that the growth rate of active infections can be represented by autoregressive fluctuations around a downward...
Persistent link: https://www.econbiz.de/10012833111
We use a dynamic panel Tobit model with heteroskedasticity to generate point, set, and density forecasts for a large cross-section of short time series of censored observations. Our fully Bayesian approach allows us to flexibly estimate the cross-sectional distribution of heterogeneous...
Persistent link: https://www.econbiz.de/10012857740