Showing 1 - 10 of 773,183
This paper proposes a machine learning approach to estimate physical forward default intensities. Default probabilities are computed using artificial neural networks to estimate the intensities of the inhomogeneous Poisson processes governing default process. The major contribution to previous...
Persistent link: https://www.econbiz.de/10012419329
I employ a variety of machine learning techniques to predict corporate bankruptcies. I compare machine learning techniques' predictions with the ones of reduced-form regressions and structural models. To assess the performances of different models, I compute a range of scores both in-sample and...
Persistent link: https://www.econbiz.de/10013216689
In this paper, we estimate coefficients of bankruptcy forecasting models, such as logistic and neural network models, by maximizing their discriminatory power as measured by the Area Under Receiver Operating Characteristics (AUROC) curve. A method is introduced and compared with traditional...
Persistent link: https://www.econbiz.de/10013225542
The prediction of financial distress has emerged as a significant concern over a prolonged period spanning more than half a century. This subject has garnered considerable attention owing to the precise outcomes derived from its predictive models. The main objective of this study is to predict...
Persistent link: https://www.econbiz.de/10014372938
We are interested in forecasting bankruptcies in a probabilistic way. Specifcally, we compare the classifcation performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and...
Persistent link: https://www.econbiz.de/10013153025
We are interested in forecasting bankruptcies in a probabilistic way. Specifically, we compare the classification performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and...
Persistent link: https://www.econbiz.de/10003928976
We develop a model to predict consumer default based on deep learning. We show that the model consistently outperforms standard credit scoring models, even though it uses the same data. Our model provides favorable credit risk assessment to young borrowers relative to standard credit scoring...
Persistent link: https://www.econbiz.de/10012847969
Using a comprehensive sample of 2,585 bankruptcies from 1990 to 2019, we benchmark the performance of various machine learning models in predicting financial distress of publicly traded U.S. firms. We find that gradient boosted trees outperform other models in one-year-ahead forecasts. Variable...
Persistent link: https://www.econbiz.de/10014238959
Corporate distress models typically only employ the numerical financial variables in the firms' annual reports. We develop a model that employs the unstructured textual data in the reports as well, namely the auditors' reports and managements' statements. Our model consists of a convolutional...
Persistent link: https://www.econbiz.de/10011930209
I study the use of non-linear models and accounting inputs to predict the occurrence of litigated bankruptcies and their associated filing outcomes. The main purpose of this study is to identify the accounting patterns associated with bankruptcies. The filing outcomes include, among others, how...
Persistent link: https://www.econbiz.de/10012848588