Showing 1 - 4 of 4
Fan, Heckman and Wand (1995) proposed locally weighted kernel polynomial regression methods for generalized linear models and quasilikelihood functions. When the covariate variables are missing at random, we propose a weighted estimator based on the inverse selection probability weights....
Persistent link: https://www.econbiz.de/10010310756
In parametric regression problems, estimation of the parameter of interest is typically achieved via the solution of a set of unbiased estimating equations. We are interested in problems where in addition to this parameter, the estimating equations consist of an unknown nuisance function which...
Persistent link: https://www.econbiz.de/10010310762
We use ideas from estimating function theory to derive new, simply computed consistent covariance matrix estimates in nonparametric regression and in a class of semiparametric problems. Unlike other estimates in the literature, ours do not require auxiliary or additional nonparametric regressions.
Persistent link: https://www.econbiz.de/10010310772
In this paper we specify a linear Cliff and Ord-type spatial model. The model allows for spatial lags in the dependent variable, the exogenous variables, and disturbances. The innovations in the disturbance process are assumed to be heteroskedastic with an unknown form. We formulate a multi-step...
Persistent link: https://www.econbiz.de/10010264508