Showing 1 - 10 of 150
We develop a new parameter stability test against the alternative of observation driven generalized autoregressive score dynamics. The new test generalizes the ARCH-LM test of Engle (1982) to settings beyond time-varying volatility and exploits any autocorrelation in the likelihood scores under...
Persistent link: https://www.econbiz.de/10013060732
We introduce a dynamic statistical model for Skellam distributed random variables. The Skellam distribution can be obtained by taking differences between two Poisson distributed random variables. We treat cases where observations are measured over time and where possible serial correlation is...
Persistent link: https://www.econbiz.de/10010253460
We develop a new parameter stability test against the alternative of observation driven generalized autoregressive score dynamics. The new test generalizes the ARCH-LM test of Engle (1982) to settings beyond time-varying volatility and exploits any autocorrelation in the likelihood scores under...
Persistent link: https://www.econbiz.de/10010229896
We study the strong consistency and asymptotic normality of the maximum likelihood estimator for a class of time series models driven by the score function of the predictive likelihood. This class of nonlinear dynamic models includes both new and existing observation driven time series models....
Persistent link: https://www.econbiz.de/10010250505
The strong consistency and asymptotic normality of the maximum likelihood estimator in observation-driven models usually requires the study of the model both as a filter for the time-varying parameter and as a data generating process (DGP) for observed data. The probabilistic properties of the...
Persistent link: https://www.econbiz.de/10010364739
We develop optimal formulations for nonlinear autoregressive models by representing them as linear autoregressive models with time-varying temporal dependence coefficients. We propose a parameter updating scheme based on the score of the predictive likelihood function at each time point. The...
Persistent link: https://www.econbiz.de/10010390075
We study the performance of two analytical methods and one simulation method for computing in-sample confidence bounds for time-varying parameters. These in-sample bounds are designed to reflect parameter uncertainty in the associated filter. They are applicable to the complete class of...
Persistent link: https://www.econbiz.de/10010484891
We introduce a new estimation framework which extends the Generalized Method of Moments (GMM) to settings where a subset of the parameters vary over time with unknown dynamics. To filter out the dynamic path of the time-varying parameter, we approximate the dynamics by an autoregressive process...
Persistent link: https://www.econbiz.de/10011431471
We study the performance of alternative methods for calculating in-sample confidence and out of-sample forecast bands for time-varying parameters. The in-sample bands reflect parameter uncertainty only. The out-of-sample bands reflect both parameter uncertainty and innovation uncertainty. The...
Persistent link: https://www.econbiz.de/10011295703
Persistent link: https://www.econbiz.de/10011389921