Numerically accelerated importance sampling for nonlinear non-Gaussian state-space models
Year of publication: |
2015
|
---|---|
Authors: | Koopman, Siem Jan ; Lucas, André ; Scharth, Marcel |
Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Alexandria, Va. : American Statistical Association, ISSN 0735-0015, ZDB-ID 876122-X. - Vol. 33.2015, 1, p. 114-127
|
Subject: | Control variables | Efficient importance sampling | Kalman filter | Numerical integration | Simulated maximum likelihood | Simulation smoothing | Stochastic volatility model | Simulation | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Zustandsraummodell | State space model | Stochastischer Prozess | Stochastic process | Monte-Carlo-Simulation | Monte Carlo simulation | Volatilität | Volatility | Stichprobenerhebung | Sampling | Schätztheorie | Estimation theory |
-
On importance sampling for state space models
Jungbacker, Borus, (2005)
-
Numerically accelerated importance sampling for nonlinear non-Gaussian state space models
Koopman, Siem Jan, (2012)
-
The analysis of stochastic volatility in the presence of daily realised measures
Koopman, Siem Jan, (2011)
- More ...
-
Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models
Koopman, Siem Jan, (2012)
-
Predicting time-varying parameters with parameter-driven and observation-driven models
Koopman, Siem Jan, (2012)
-
Numerically accelerated importance sampling for nonlinear non-Gaussian state space models
Koopman, Siem Jan, (2011)
- More ...