Showing 1 - 10 of 19
We investigate the possibility of exploiting partial correlation graphs for identifying interpretable latent variables underlying a multivariate time series. It is shown how the collapsibility and separation properties of partial correlation graphs can be used to understand the relation between...
Persistent link: https://www.econbiz.de/10010306285
We propose multivariate classification as a statistical tool to describe business cycles. These cycles are often analyzed as a univariate phenomenon in terms of GNP or industrial net production ignoring additional information in other economic variables. Multivariate classification overcomes...
Persistent link: https://www.econbiz.de/10010316572
Persistent link: https://www.econbiz.de/10011760436
Principal component analysis denotes a popular algorithmic technique to dimension reduction and factor extraction. Spatial variants have been proposed to account for the particularities of spatial data, namely spatial heterogeneity and spatial autocorrelation, and we present a novel approach...
Persistent link: https://www.econbiz.de/10010251651
We propose multivariate classification as a statistical tool to describe business cycles. These cycles are often analyzed as a univariate phenomenon in terms of GNP or industrial net production ignoring additional information in other economic variables. Multivariate classification overcomes...
Persistent link: https://www.econbiz.de/10009793278
Persistent link: https://www.econbiz.de/10011312235
Persistent link: https://www.econbiz.de/10011504536
We investigate the possibility of exploiting partial correlation graphs for identifying interpretable latent variables underlying a multivariate time series. It is shown how the collapsibility and separation properties of partial correlation graphs can be used to understand the relation between...
Persistent link: https://www.econbiz.de/10010476999
Principal component analysis (PCA) is a widely used dimension reduction tool in the analysis of high-dimensional data. However, in many applications such as risk quantification in finance or climatology, one is interested in capturing the tail variations rather than variation around the mean. In...
Persistent link: https://www.econbiz.de/10011550313
A factor model based covariance matrix is used to build a new form of Mahalanobis distance. The distribution and relative properties of the new Mahalanobis distances are derived. A new type of Mahalanobis distance based on the separated part of the factor model is defined. Contamination effects...
Persistent link: https://www.econbiz.de/10012265396