Showing 1 - 10 of 563
This paper proposes a new combined semiparametric estimator of the conditional variance that takes the product of a parametric estimator and a nonparametric estimator based on machine learning. A popular kernel-based machine learning algorithm, known as the kernel-regularized least squares...
Persistent link: https://www.econbiz.de/10012814196
I discuss nonlinear difference-in-differences models, arguing their interpretation depends on the context of their application. When parallel trends are assumed in the natural scale of the dependent variable, I contend the treatment effect is the interaction effect (a cross-difference), while if...
Persistent link: https://www.econbiz.de/10013241778
Composite Marginal Likelihood (CML) has become a popular approach for estimating spatial probit models. However, for spatial autoregressive specifications the existing brute-force implementations are infeasible in large samples as they rely on inverting the high-dimensional precision matrix of...
Persistent link: https://www.econbiz.de/10012987287
The focus of this paper is an information theoretic-symbolic logic approach to extract information from complex economic systems and unlock its dynamic content. Permutation Entropy (PE) is used to capture the permutation patterns-ordinal relations among the individual values of a given time...
Persistent link: https://www.econbiz.de/10012866116
The focus of this paper is an information theoretic-symbolic logic approach to extract information from complex economic systems and unlock its dynamic content. Permutation Entropy (PE) is used to capture the permutation patterns-ordinal relations among the individual values of a given time...
Persistent link: https://www.econbiz.de/10012025643
The sample covariance matrix is known to contain substantial statistical noise, making it inappropriate for use in financial decision making. Leading researchers have proposed various filtering methods that attempt to reduce the level of noise in the covariance matrix estimator. In most cases,...
Persistent link: https://www.econbiz.de/10012965654
Conditional distributions for the analysis of convergence are usually estimated using a standard kernel smoother but this is known to be biased. Hyndman et al. (1996) thus suggest a conditional density estimator with a mean function specified by a local polynomial smoother, i.e. one with better...
Persistent link: https://www.econbiz.de/10013115940
I expose the risk of false discoveries in the context of multiple treatment effects. A false discovery is a nonexistent effect that is falsely labeled as statistically significant by its individual t-value. Labeling nonexistent effects as statistically significant has wide-ranging academic and...
Persistent link: https://www.econbiz.de/10009740949
We study the relationship between conditional quantiles of returns and the long-, medium- and short-term volatility in a portfolio of financial assets. We argue that the combination of quantile panel regression and wavelet decomposition of the volatility time series provides us with new insights...
Persistent link: https://www.econbiz.de/10011722181
This paper aims to establish asymptotic normality of the local linear kernel estimator for quantile regression under near epoch dependence, a useful concept in characterising time series dependence of extensive interests in Econometrics. In particular, near epoch dependence can cover a wide...
Persistent link: https://www.econbiz.de/10012839310