A data-driven approach for predicting remaining intra-surgical time and enhancing operating room efficiency
| Year of publication: |
2025
|
|---|---|
| Authors: | Ramadan, Saleem ; Al-Dahidi, Sameer ; Al Masarwah, Najat |
| Published in: |
Journal of industrial engineering and management : JIEM. - Terrassa : Universitat Politècnica de Catalunya (UPC), ISSN 2013-0953, ZDB-ID 2495074-9. - Vol. 18.2025, 1, p. 145-166
|
| Subject: | convolutional neural network | machine learning | operating room management | Remaining time predictions | scheduling | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Neural networks | Scheduling-Verfahren | Scheduling problem | Prognoseverfahren | Forecasting model | Krankenhaus | Hospital | Prozessmanagement | Business process management |
-
Radisic-Aberger, Ognjen, (2025)
-
Combining machine learning and optimization for the operational patient-bed assignment problem
Schäfer, Fabian, (2023)
-
Shin, Woo-Jin, (2025)
- More ...
-
Pallet loading optimization considering storage time and relative humidity
Al Masarwah, Najat, (2023)
-
Al-Fandi, Lawrence, (2025)
-
Consideration of processing time dissimilarity in batch-cyclic scheduling of flowshop cells
Al Masarwah, Najat, (2021)
- More ...