A data-driven approach for predicting remaining intra-surgical time and enhancing operating room efficiency
Year of publication: |
2025
|
---|---|
Authors: | Ramadan, Saleem ; Abu-Shams, Mohammad ; Al-Dahidi, Sameer ; Odeh, Ibrahim ; Al Masarwah, Najat |
Published in: |
Journal of industrial engineering and management : JIEM. - Terrassa : Universitat Politècnica de Catalunya (UPC), ISSN 2013-0953, ZDB-ID 2495074-9. - Vol. 18.2025, 1, p. 145-166
|
Subject: | convolutional neural network | machine learning | operating room management | Remaining time predictions | scheduling | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Neural networks | Scheduling-Verfahren | Scheduling problem | Prognoseverfahren | Forecasting model | Krankenhaus | Hospital | Prozessmanagement | Business process management |
-
Combining machine learning and optimization for the operational patient-bed assignment problem
Schäfer, Fabian, (2023)
-
Predicting the length-of-stay of pediatric patients using machine learning algorithms
Boff Medeiros, Natália, (2025)
-
Yamashiro, Hirochika, (2021)
- More ...
-
Pallet loading optimization considering storage time and relative humidity
Al Masarwah, Najat, (2023)
-
Cellular manufacturing design 1996-2021 : a review and introduction to applications of Industry 4.0
YounesSinaki, Roohollah, (2023)
-
Multi-objective fuzzy cell scheduling
Manjeet Singh, (2018)
- More ...