A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting
Year of publication: |
2019
|
---|---|
Authors: | Chen, Shuixia ; Wang, Jian-qiang ; Zhang, Hong-yu |
Published in: |
Technological forecasting & social change : an international journal. - Amsterdam : Elsevier, ISSN 0040-1625, ZDB-ID 280700-2. - Vol. 146.2019, p. 41-54
|
Subject: | Clustering algorithm | Influential factors analysis | Particle swarm optimisation | Short-term atmospheric pollutant concentration forecasting | Support vector machine | Algorithmus | Algorithm | Prognoseverfahren | Forecasting model | Luftverschmutzung | Air pollution | Clusteranalyse | Cluster analysis | Regionales Cluster | Regional cluster | Mustererkennung | Pattern recognition | Theorie | Theory | Mathematische Optimierung | Mathematical programming |
-
Burgard, Jan Pablo, (2024)
-
Margin optimal classification trees
D'Onofrio, Federico, (2024)
-
Clustering categories in support vector machines
Carrizosa, Emilio, (2017)
- More ...
-
The impact of COVID-19 on the service business industry : insights from a bibliometric review
Chen, Shuixia, (2023)
-
An online reviews-driven method for the prioritization of improvements in hotel services
Zhang, Chenxi, (2021)
-
Chen, Shuixia, (2024)
- More ...