A machine learning approach to deal with ambiguity in the humanitarian decision making
Year of publication: |
December 2021
|
---|---|
Authors: | Graß, Emilia ; Ortmann, Janosch ; Balcik, Burcu ; Rei, Walter |
Publisher: |
Montréal (Québec) : Bureau de Montreal, Université de Montreal |
Subject: | humanitarian decision making | ambiguity | data aggregation | clustering | Syrian conflict | needs assessment | Humanitäre Hilfe | Humanitarian aid | Entscheidung | Decision | Künstliche Intelligenz | Artificial intelligence | Entscheidung unter Unsicherheit | Decision under uncertainty | Entscheidungstheorie | Decision theory |
Extent: | 1 Online-Ressource (circa 33 Seiten) Illustrationen |
---|---|
Series: | CIRRELT. - Montréal (Québec), Canada : [CIRRELT], ZDB-ID 3003614-8. - Vol. CIRRELT-2021, 51 |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
Source: | ECONIS - Online Catalogue of the ZBW |
-
A machine learning approach to deal with ambiguity in the humanitarian decision-making
Graß, Emilia, (2023)
-
Using methods from machine learning to evaluate behavioral models of choice under risk and ambiguity
Peysakhovich, Alexander, (2017)
-
Information, uncertainty & espionage
Phillips, Peter J., (2024)
- More ...
-
A machine learning approach to deal with ambiguity in the humanitarian decision-making
Graß, Emilia, (2023)
-
A machine learning approach to deal with ambiguity in the humanitarian decision‐making
Grass, Emilia, (2023)
-
Problem-driven scenario clustering in stochastic optimization
Keutchayan, Julien, (2023)
- More ...