A neural network Monte Carlo approximation for expected utility theory
Year of publication: |
2021
|
---|---|
Authors: | Zhu, Yichen ; Escobar, Marcos |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 14.2021, 7, Art.-No. 322, p. 1-18
|
Subject: | 4/2 stochastic volatility model | CRRA utility | expected utility theory | neural networks | Erwartungsnutzen | Expected utility | Neuronale Netze | Neural networks | Theorie | Theory | Nutzen | Utility | Stochastischer Prozess | Stochastic process | Monte-Carlo-Simulation | Monte Carlo simulation | Wahrscheinlichkeitsrechnung | Probability theory |
-
A multivariate 4/2 stochastic covariance model : properties and applications to portfolio decisions
Cheng, Yuyang, (2023)
-
Inference using simulated neural moments
Creel, Michael D., (2021)
-
On stochastic independence under ambiguity
Ceron, Federica, (2021)
- More ...
-
A neural network Monte Carlo approximation for expected utility theory
Zhu, Yichen, (2021)
-
A polynomial-affine approximation for dynamic portfolio choice
Zhu, Yichen, (2023)
-
Derivatives-based portfolio decisions : an expected utility insight
Escobar, Marcos, (2022)
- More ...