A novel loss function for neural network models exploring stock realized volatility using Wasserstein Distance
Year of publication: |
2024
|
---|---|
Authors: | Souto, Hugo Gobato ; Moradi, Amir |
Subject: | Exogenous variables | Neural basis expansion analysis | Neural networks | Realized volatility forecasting | Temporal fusion transformer | Topological data analysis | Neuronale Netze | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Schätztheorie | Estimation theory | Kapitaleinkommen | Capital income | Zeitreihenanalyse | Time series analysis | Schätzung | Estimation |
-
Topological tail dependence : evidence from forecasting realized volatility
Souto, Hugo Gobato, (2023)
-
Nõu, Anders, (2023)
-
Kartsonakis Mademlis, Dimitrios, (2021)
- More ...
-
Forecasting realized volatility through financial turbulence and neural networks
Souto, Hugo Gobato, (2023)
-
Topological tail dependence : evidence from forecasting realized volatility
Souto, Hugo Gobato, (2023)
-
Gobato Souto, Hugo, (2023)
- More ...