A random forest based approach for predicting spreads in the primary catastrophe bond market
Year of publication: |
2021
|
---|---|
Authors: | Makariou, Despoina ; Barrieu, Pauline ; Chen, Yining |
Published in: |
Insurance / Mathematics & economics. - Amsterdam : Elsevier, ISSN 0167-6687, ZDB-ID 8864-X. - Vol. 101.2021, 2, p. 140-162
|
Subject: | Catastrophe bond pricing | Interactions | Machine learning in insurance | Minimal depth importance | Permutation importance | Primary market spread prediction | Random forest | Stability | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Anleihe | Bond | Theorie | Theory | Zinsstruktur | Yield curve |
-
Machine learning treasury yields
Kakushadze, Zura, (2020)
-
Suimon, Yoshiyuki, (2020)
-
Treasury Bond Price and Yield Curve Prediction via No Arbitrage Arguments and Machine Learning
Zhang, Weiping, (2022)
- More ...
-
Barrieu, Pauline, (2025)
-
Development and application of statistical learning methods in insurance and finance
Makariou, Despoina, (2022)
-
Tzougas, George, (2022)
- More ...