A sparse approximate factor model for high-dimensional covariance matrix estimation and portfolio selection
Year of publication: |
2025
|
---|---|
Authors: | Daniele, Maurizio ; Pohlmeier, Winfried ; Zagidullina, Aygul |
Published in: |
Journal of financial econometrics. - Oxford : Oxford University Press, ISSN 1479-8417, ZDB-ID 2065613-0. - Vol. 23.2025, 1, Art.-No. nbae017, p. 1-30
|
Subject: | approximate factor model | l1-regularization | high-dimensional covariance matrix | portfolio allocation | weak factors | Portfolio-Management | Portfolio selection | Korrelation | Correlation | Faktorenanalyse | Factor analysis | Schätztheorie | Estimation theory | CAPM |
-
Sparse approximate factor estimation for high-dimensional covariance matrices
Daniele, Maurizio, (2020)
-
A regularized high-dimensional positive definite covariance estimator with high-frequency data
Cui, Liyuan, (2024)
-
Large covariance estimation using a factor model with common and group-specific factors
Shi, Yafeng, (2023)
- More ...
-
Sparse approximate factor estimation for high-dimensional covariance matrices
Daniele, Maurizio, (2020)
-
Simultane Probit- und Tobitmodelle : Theorie und Anwendungen auf Fragen der Innovationsökonomik
Pohlmeier, Winfried, (1989)
-
Die Schätzung simultaner Tobitmodelle mit marginalen Maximum-Likelihood-Schätzverfahren
Pohlmeier, Winfried, (1988)
- More ...