A systematic review on techniques of feature selection and classification for text mining
Year of publication: |
2018
|
---|---|
Authors: | Sridharan, K. ; Sivakumar, P. |
Published in: |
International journal of business information systems : IJBIS. - Olney, Bucks. : Inderscience Enterprises, ISSN 1746-0972, ZDB-ID 2193362-5. - Vol. 28.2018, 4, p. 504-518
|
Subject: | information gain | IG | document frequency | DF | term strength | TS | artificial neural network | latent semantic analysis | LSA | text mining | stemming | Data Mining | Data mining | Neuronale Netze | Neural networks | Text | Bibliometrie | Bibliometrics | Klassifikation | Classification | Künstliche Intelligenz | Artificial intelligence | Semantisches Web | Semantic web |
-
Application of latent semantic analysis in accounting research
Hutchison, Paul D., (2023)
-
Adapting support vector optimisation algorithms to textual gender classification
Gomez, Javier, (2024)
-
Bilingual textual similarity in scientific documents
Kawamura, Takahiro, (2021)
- More ...
-
Personality traits and performance of military parachutist trainees
Sharma, V.M., (1994)
-
Empirical entropy, minimax regret and minimax risk
Rakhlin, Alexander, (2013)
-
Small-loss bounds for online learning with partial information
Lykouris, Thodoris, (2022)
- More ...