Adaptive importance sampling for efficient stochastic root finding and quantile estimation
Year of publication: |
2024
|
---|---|
Authors: | He, Shengyi ; Jiang, Guangxin ; Lam, Henry ; Fu, Michael |
Published in: |
Operations research. - Linthicum, Md. : INFORMS, ISSN 1526-5463, ZDB-ID 2019440-7. - Vol. 72.2024, 6, p. 2612-2630
|
Subject: | adaptive algorithms | central limit theorem | importance sampling | Monte Carlo simulation | quantile estimation | Simulation | stochastic optimization | stochastic root finding | Monte-Carlo-Simulation | Stochastischer Prozess | Stochastic process | Schätztheorie | Estimation theory | Stichprobenerhebung | Sampling | Algorithmus | Algorithm |
-
Jiang, Guangxin, (2016)
-
Finite Gaussian mixture approximations to analytically intractable density Kernels
Khorunzhina, Natalia, (2019)
-
Importance sampling in stochastic programming : a Markov chain Monte Carlo approach
Parpas, Panos, (2015)
- More ...
-
On estimating quantile sensitivities via infinitesimal perturbation analysis
Jiang, Guangxin, (2015)
-
Jiang, Guangxin, (2016)
-
Maximum likelihood estimation by Monte Carlo simulation : toward data-driven stochastic modeling
Peng, Yijie, (2020)
- More ...