An autocovariance-based learning framework for high-dimensional functional time series
Year of publication: |
2024
|
---|---|
Authors: | Chang, Jinyuan ; Chen, Cheng ; Qiao, Xinghao ; Yao, Qiwei |
Subject: | Block regularized minimum distance estimation | Dimension reduction | Functional time series | High-dimensional data | Non-asymptotics | Sparsity | Zeitreihenanalyse | Time series analysis | Schätztheorie | Estimation theory | Nichtparametrisches Verfahren | Nonparametric statistics | Autokorrelation | Autocorrelation |
-
Convolutional autoregressive models for functional time series
Liu, Xialu, (2016)
-
Functional time series approach to analyzing asset returns co-movements
Saart, Patrick W., (2022)
-
Uncovering hidden insights with long-memory process detection : an in-depth overview
Hassani, Hossein, (2023)
- More ...
-
Functional linear regression : dependence and error contamination
Chen, Cheng, (2022)
-
High dimensional stochastic regression with latent factors, endogeneity and nonlinearity
Chang, Jinyuan, (2015)
-
Confidence regions for entries of a large precision matrix
Chang, Jinyuan, (2018)
- More ...