An efficient sequential learning algorithm in regime-switching environments
Year of publication: |
2019
|
---|---|
Authors: | Kim, Jaeho ; Lee, Sunhyung |
Published in: |
Studies in nonlinear dynamics and econometrics : SNDE ; quarterly publ. electronically on the internet. - Berlin : De Gruyter, ISSN 1558-3708, ZDB-ID 1385261-9. - Vol. 23.2019, 3, p. 1-14
|
Subject: | parameter learning | particle filters | regime switching models | sequential Monte Carlo estimation | volatility models | Monte-Carlo-Simulation | Monte Carlo simulation | Markov-Kette | Markov chain | Volatilität | Volatility | Lernprozess | Learning process | Algorithmus | Algorithm | Schätzung | Estimation | Schätztheorie | Estimation theory | Stochastischer Prozess | Stochastic process |
-
Witzany, Jiří, (2019)
-
Estimation of dynamic panel data models with stochastic volatility using particle filters
Xu, Wen, (2016)
-
Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility
Leon-Gonzalez, Roberto, (2015)
- More ...
-
An Efficient Sequential Learning Algorithm in Regime-Switching Environments
Kim, Jaeho, (2018)
-
Heterogeneous price effects and increased price dispersion from quantity‐based congestion management
Lee, Sunhyung, (2021)
-
Differential Effects of Fiscal Decentralization : Local Revenue Share vs. Local Fiscal Autonomy
Lee, Sunhyung, (2018)
- More ...