Automated Sensitivity Analysis for Bayesian Inference via Markov Chain Monte Carlo : Applications to Gibbs Sampling
| Year of publication: |
2018
|
|---|---|
| Authors: | Jacobi, Liana |
| Other Persons: | Joshi, Mark S. (contributor) ; Zhu, Dan (contributor) |
| Publisher: |
[2018]: [S.l.] : SSRN |
| Subject: | Markov-Kette | Markov chain | Bayes-Statistik | Bayesian inference | Monte-Carlo-Simulation | Monte Carlo simulation | Sensitivitätsanalyse | Sensitivity analysis | Stichprobenerhebung | Sampling | Schätztheorie | Estimation theory |
| Extent: | 1 Online-Ressource (39 p) |
|---|---|
| Type of publication: | Book / Working Paper |
| Language: | English |
| Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments February 9, 2018 erstellt |
| Other identifiers: | 10.2139/ssrn.2984054 [DOI] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Bayesian estimation and prediction based on Rayleigh record data with applications
Abu Awwad, Raed R., (2021)
-
Computing Bayes : Bayesian computation from 1763 to the 21st century
Martin, Gael M., (2020)
-
Parameter estimation in spatial econometric models with non-random missing data
Seya, Hajime, (2021)
- More ...
-
Automatic Infinitesimal Perturbation Analysis for Bayesian MCMC Inference via Gibbs Samplers
Jacobi, Liana, (2020)
-
Jacobi, Liana, (2025)
-
Efficient selection of hyperparameters in large Bayesian VARs using automatic differentiation
Chan, Joshua, (2020)
- More ...