Automatic Infinitesimal Perturbation Analysis for Bayesian MCMC Inference via Gibbs Samplers
Year of publication: |
2020
|
---|---|
Authors: | Jacobi, Liana |
Other Persons: | Zhu, Dan (contributor) ; Joshi, Mark S. (contributor) |
Publisher: |
[2020]: [S.l.] : SSRN |
Subject: | Bayes-Statistik | Bayesian inference | Theorie | Theory | Markov-Kette | Markov chain | Monte-Carlo-Simulation | Monte Carlo simulation |
Extent: | 1 Online-Ressource (28 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments February 26, 2019 erstellt |
Other identifiers: | 10.2139/ssrn.3347399 [DOI] |
Classification: | C01 - Econometrics ; C11 - Bayesian Analysis |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Evolutionary sequential Monte Carlo samplers for change-point models
Dufays, Arnaud, (2016)
-
Pacifico, Antonio, (2022)
-
Bayesian Analysis of Nested Logit Model by Markov Chain Monte Carlo
Lahiri, Kajal, (2002)
- More ...
-
Jacobi, Liana, (2018)
-
Efficient selection of hyperparameters in large Bayesian VARs using automatic differentiation
Chan, Joshua, (2020)
-
How Sensitive are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis
Chan, Joshua, (2018)
- More ...