Bayesian artificial neural networks for frontier efficiency analysis
Year of publication: |
January 2023 ; Substantially revised version
|
---|---|
Authors: | Tsionas, Efthymios G. ; Parmeter, Christopher F. ; Zelenyuk, Valentin |
Publisher: |
St. Lucia, Qld., Australia : School of Economics, University of Queensland |
Subject: | Machine Learning | Simulation | Flexible Functional Forms | Bayesian Artificial Neural Networks | Banking | Efficiency Analysis | Neuronale Netze | Neural networks | Künstliche Intelligenz | Artificial intelligence | Technische Effizienz | Technical efficiency | Bayes-Statistik | Bayesian inference | Data-Envelopment-Analyse | Data envelopment analysis | Theorie | Theory | Nichtparametrisches Verfahren | Nonparametric statistics | Bank | Effizienz | Efficiency |
-
Bayesian Artificial Neural Networks for frontier efficiency analysis
Tsionas, Efthymios G., (2023)
-
Bridging the divide? : Bayesian artificial neural networks for frontier efficiency analysis
Tsionas, Efthymios G., (2021)
-
Cluster-adjusted DEA efficiency in the presence of heterogeneity : an application to banking sector
Sakouvogui, Kekoura, (2020)
- More ...
-
Bayesian Artificial Neural Networks for frontier efficiency analysis
Tsionas, Efthymios G., (2023)
-
Is newer always better? : a reinvestigation of productivity dynamics using updated PWT data
Yan, Meng, (2023)
-
Combining the virtues of stochastic frontier and data envelopment analysis
Parmeter, Christopher F., (2019)
- More ...