Bayesian probability of default models with Langevin dynamics
| Year of publication: |
2025
|
|---|---|
| Authors: | Conti, Andrea ; Morelli, Giacomo |
| Published in: |
Quantitative finance. - London : Taylor & Francis, ISSN 1469-7696, ZDB-ID 2027557-2. - Vol. 25.2025, 8, p. 1333-1341
|
| Subject: | Bayesian inference | Bayesian Neural Network | Machine learning | MCMC | Probability of default | Stochastic gradient Langevin dynamics | Bayes-Statistik | Theorie | Theory | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Wahrscheinlichkeitsrechnung | Probability theory | Markov-Kette | Markov chain | Künstliche Intelligenz | Artificial intelligence | Insolvenz | Insolvency | Kreditrisiko | Credit risk | Stochastischer Prozess | Stochastic process | Lernprozess | Learning process |
-
Bayesian regularized artificial neural networks for the estimation of the probability of default
Sariev, Eduard, (2020)
-
A deep learning approach to estimate forward default intensities
Divernois, Marc-Aurèle, (2020)
-
EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks
Kristóf, Tamás, (2022)
- More ...
-
Italien: BIP-Wachstum im 2.Q. bestätigt Konjunkturschwäche im 1.Hj, 99
Conti, Andrea, (1999)
-
Stochastic ordering of systemic risk in commodity markets
Morelli, Giacomo, (2023)
-
Andreani, Mila, (2021)
- More ...