Bayesian realized-GARCH models for financial tail risk forecasting incorporating the two-sided Weibull distribution
Year of publication: |
2019
|
---|---|
Authors: | Wang, Chao ; Chen, Qian ; Gerlach, Richard |
Published in: |
Quantitative finance. - London : Taylor & Francis, ISSN 1469-7696, ZDB-ID 2027557-2. - Vol. 19.2019, 6, p. 1017-1042
|
Subject: | Expected shortfall | Markov Chain Monte Carlo | Realized range | Realized variance | Realized-GARCH | Sub-sampling | Two-sided Weibull | Value-at-risk | Risikomaß | Risk measure | Monte-Carlo-Simulation | Monte Carlo simulation | Theorie | Theory | Markov-Kette | Markov chain | Statistische Verteilung | Statistical distribution | Prognoseverfahren | Forecasting model | ARCH-Modell | ARCH model | Varianzanalyse | Analysis of variance | Bayes-Statistik | Bayesian inference | Volatilität | Volatility | Risikomanagement | Risk management |
-
A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting
Wang, Chao, (2024)
-
Gerlach, Richard, (2020)
-
Conditional value-at-risk forecasts of an optimal foreign currency portfolio
Kim, Dongwhan, (2021)
- More ...
-
Wang, Chao, (2023)
-
Gerlach, Richard, (2022)
-
Semi-parametric financial risk forecasting incorporating multiple realized measures
Peiris, Rangika, (2024)
- More ...