Bitcoin return volatility forecasting : a comparative study between GARCH and RNN
Year of publication: |
2021
|
---|---|
Authors: | Shen, Ze ; Wan, Qing ; Leatham, David J. |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 14.2021, 7, Art.-No. 337, p. 1-18
|
Subject: | bitcoin | GARCH | machine learning | recurrent neural network | risk management | volatility | Volatilität | Volatility | ARCH-Modell | ARCH model | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Virtuelle Währung | Virtual currency | Künstliche Intelligenz | Artificial intelligence | Risikomanagement | Risk management | Finanzmarkt | Financial market | Kapitaleinkommen | Capital income |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/jrfm14070337 [DOI] hdl:10419/258441 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Forecasting returns volatility of cryptocurrency by applying various deep learning algorithms
Khan, Farman Ullah, (2023)
-
Forecasting bitcoin volatility using hybrid GARCH models with machine learning
Zahid, Mamoona, (2022)
-
Nõu, Anders, (2023)
- More ...
-
Bitcoin return volatility forecasting: A comparative study between GARCH and RNN
Shen, Ze, (2021)
-
Tail risk of coal futures in China's market
Shen, Ze, (2023)
-
Born to innovate? The birth‐order effect of CEOs on corporate innovation
Wan, Qing, (2021)
- More ...