Calibration of voting-based helpfulness measurement for online reviews : an iterative bayesian probability approach
Year of publication: |
2021
|
---|---|
Authors: | Guo, Xunhua ; Chen, George Guo-Qiang ; Wang, Cong ; Wei, Qiang ; Zhang, Zunqiang |
Published in: |
INFORMS journal on computing : JOC. - Catonsville, MD : INFORMS, ISSN 1091-9856, ZDB-ID 1316077-1. - Vol. 33.2021, 1, p. 246-261
|
Subject: | online reviews | helpfulness prediction | social voting | Bayesian probability | iterative estimation | predictive analytics | Bayes-Statistik | Bayesian inference | Prognoseverfahren | Forecasting model | Wahrscheinlichkeitsrechnung | Probability theory | Virales Marketing | Viral marketing | Theorie | Theory | Online-Handel | Online retailing | Online-Marketing | Internet marketing | Social Web | Social web |
-
Disconfirmation effect on online rating behavior : a structural model
Ho, Yi-Chun, (2017)
-
A deep learning model for online doctor rating prediction
Kulshrestha, Anurag, (2023)
-
Fan, Zhi-Ping, (2017)
- More ...
-
Providing consistent opinions from online reviews : a heuristic stepwise optimization approach
Zhang, Zunqiang, (2016)
-
Content and structure coverage : extracting a diverse information subset
Ma, Baojun, (2017)
-
Extracting representative information on intra-organizational blogging platforms
Guo, Xunhua, (2017)
- More ...