Can Machine Learning Models Capture Correlations in Corporate Distresses?
Year of publication: |
2019
|
---|---|
Authors: | Christoffersen, Benjamin |
Other Persons: | Matin, Rastin (contributor) ; Mølgaard, Pia (contributor) |
Publisher: |
[2019]: [S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Insolvenz | Insolvency | Korrelation | Correlation | Theorie | Theory |
Extent: | 1 Online-Ressource (32 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments July 12, 2019 erstellt |
Other identifiers: | 10.2139/ssrn.3273985 [DOI] |
Classification: | c55 ; G17 - Financial Forecasting ; G33 - Bankruptcy; Liquidation |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Can machine learning models capture correlations in corporate distresses?
Christoffersen, Benjamin, (2018)
-
Predicting distresses using deep learning of text segments in annual reports
Hansen, Caspar, (2018)
-
Machine Learning, Corporate Bankruptcies and Variable Selection
Rossi, Ludovico, (2021)
- More ...
-
Can machine learning models capture correlations in corporate distresses?
Christoffersen, Benjamin, (2018)
-
Can machine learning models capture correlations in corporate distresses?
Christoffersen, Benjamin, (2018)
-
Modeling frailty correlated defaults with multivariate latent factors
Christoffersen, Benjamin, (2020)
- More ...