Capturing deep tail risk via sequential learning of quantile dynamics
Year of publication: |
2019
|
---|---|
Authors: | Wu, Qi ; Yan, Xing |
Published in: |
Journal of economic dynamics & control. - Amsterdam [u.a.] : Elsevier, ISSN 0165-1889, ZDB-ID 717409-3. - Vol. 109.2019, p. 1-17
|
Subject: | Asymmetric heavy-tail distribution | Dynamic quantile modeling | Financial risk management | Long short-term memory | Machine learning | Neural network | Parametric quantile functions | Time-varying higher-order conditional moments | VaR Forecasts | Risikomaß | Risk measure | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Statistische Verteilung | Statistical distribution | Künstliche Intelligenz | Artificial intelligence | Risikomanagement | Risk management | Volatilität | Volatility | Lernprozess | Learning process | ARCH-Modell | ARCH model | Schätztheorie | Estimation theory | Momentenmethode | Method of moments | VAR-Modell | VAR model |
-
Forecasting VaR and ES in emerging markets : the role of time-varying higher moments
Trung Hai Le, (2024)
-
Bitcoin return volatility forecasting : a comparative study between GARCH and RNN
Shen, Ze, (2021)
-
Nõu, Anders, (2023)
- More ...
-
The Causal Learning of Retail Delinquency
Huang, Yiyan, (2021)
-
Parsimonious Quantile Regression of Financial Asset Tail Dynamics via Sequential Learning
Yan, Xing, (2021)
-
Risk and Return Prediction for Pricing Portfolios of Non-performing Consumer Credit
Wang, Siyi, (2022)
- More ...