Causal random forests model using instrumental variable quantile regression
Year of publication: |
2019
|
---|---|
Authors: | Chen, Jau-er ; Hsiang, Chen-Wei |
Published in: |
Econometrics : open access journal. - Basel : MDPI, ISSN 2225-1146, ZDB-ID 2717594-7. - Vol. 7.2019, 4/49, p. 1-22
|
Subject: | causal machine learning | instrumental variable | quantile regression | quantile treatment effect | random forests | Regressionsanalyse | Regression analysis | Kausalanalyse | Causality analysis | IV-Schätzung | Instrumental variables | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/econometrics7040049 [DOI] hdl:10419/247549 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Debiased/double machine learning for instrumental variable quantile regressions
Chen, Jau-er, (2021)
-
Estimation of complier expected shortfall treatment effects with a binary instrumental variable
Wei, Bo, (2024)
-
A comparison of two qantile models with endogeneity
Wüthrich, Kaspar, (2014)
- More ...
-
Causal random forests model using instrumental variable quantile regression
Chen, Jau-er, (2019)
-
Debiased/double machine learning for instrumental variable quantile regressions
Chen, Jau-er, (2021)
-
Estimating and Testing Quantile Regression with Structural Changes
Chen, Jau-er, (2017)
- More ...